\triangle to N transition and \triangle form factors in Lattice QCD

C. Alexandrou University of Cyprus and Cyprus Institute

NSTAR 2011, Jefferson Lab, 18 May 2011

Outline

Motivation

Introduction

- QCD on the lattice
- Recent results
 - Hadron masses
 - Nucleon form factors

- Experimental information
- Lattice results

N - Δ axial-vector and pseudoscalar form factors

Δ form factors

- A electromagnetic form factors
- △ axial-vector form factors
- Pseudoscalar Δ couplings

Width of resonances

Conclusions

Motivation

Δ to Nucleon transition form factors:

- ► Electromagnetic form factors are known experimentally; In particular G^{*}_{M1} is precisely measured → can we reproduce it from lattice QCD?
- Quadrupole γ^{*} N → ∆ form factors G_{E2} and G_{C2} may indicate deformation in the nucleon/∆ → can we calculate them from lattice QCD?
- Provide input on axial-vector FFs
 - * Understand the q^2 -dependence of axial form factors C_5^A and C_6^A that correspond to the nucleon axial form factor G_A and nucleon induced pseudoscalar form factor G_ρ
 - Provide important input for phenomenological models builders and for chiral effective theories
- Evaluate $\pi N\Delta$ coupling and examine the non-diagonal Goldberger-Treiman relation

Form factors of the Δ:

- Difficult to measure experimentally
- ► Electromagnetic form factors → magnetic moment of Δ, quadrupole moment ⇒ obtain information on its charge distribution in the infinite momentum frame (talk by M. Vanderhaeghen)

 \implies Calculate within lattice QCD the form factors of the nucleon/ Δ system \rightarrow global fit

Motivation

Δ to Nucleon transition form factors:

- ► Electromagnetic form factors are known experimentally; In particular G^{*}_{M1} is precisely measured → can we reproduce it from lattice QCD?
- Quadrupole γ^{*} N → ∆ form factors G_{E2} and G_{C2} may indicate deformation in the nucleon/∆ → can we calculate them from lattice QCD?
- Provide input on axial-vector FFs
 - Understand the q²-dependence of axial form factors C₅^A and C₆^A that correspond to the nucleon axial form factor G_A and nucleon induced pseudoscalar form factor G_ρ
 - Provide important input for phenomenological models builders and for chiral effective theories
- Evaluate $\pi N\Delta$ coupling and examine the non-diagonal Goldberger-Treiman relation

Form factors of the Δ:

- Difficult to measure experimentally
- ► Electromagnetic form factors → magnetic moment of ∆, quadrupole moment ⇒ obtain information on its charge distribution in the infinite momentum frame (talk by M. Vanderhaeghen)
- Study the axial-vector and pseudoscalar form factors —> New features arise e.g. two Goldberger-Treiman relations

 \implies Calculate within lattice QCD the form factors of the nucleon/ Δ system \rightarrow global fit

Motivation

Δ to Nucleon transition form factors:

- ► Electromagnetic form factors are known experimentally; In particular G^{*}_{M1} is precisely measured → can we reproduce it from lattice QCD?
- Quadrupole γ^{*}N → ∆ form factors G_{E2} and G_{C2} may indicate deformation in the nucleon/∆ → can we calculate them from lattice QCD?
- Provide input on axial-vector FFs
 - Understand the q²-dependence of axial form factors C₅^A and C₆^A that correspond to the nucleon axial form factor G_A and nucleon induced pseudoscalar form factor G_ρ
 - Provide important input for phenomenological models builders and for chiral effective theories
- Evaluate $\pi N\Delta$ coupling and examine the non-diagonal Goldberger-Treiman relation

Form factors of the Δ:

- Difficult to measure experimentally
- ► Electromagnetic form factors → magnetic moment of ∆, quadrupole moment ⇒ obtain information on its charge distribution in the infinite momentum frame (talk by M. Vanderhaeghen)
- Study the axial-vector and pseudoscalar form factors —> New features arise e.g. two Goldberger-Treiman relations

 \implies Calculate within lattice QCD the form factors of the nucleon/ Δ system \rightarrow global fit

QCD on the lattice

● Discretization of space-time in 4 Euclidean dimensions → simplest isotropic hypercubic grid:

 \implies Rotation into imaginary time is the most drastic modification Lattice acts as a non-perturbative regularization scheme with the lattice spacing *a* providing an ultraviolet cutoff at $\pi/a \rightarrow$ no infinities

- Gauge fields are links and fermions are anticommuting Grassmann variables defined at each site of the lattice. They belong to the fundamental representation of SU(3)
- Construction of an appropriate action such that when a → 0 (and Volume→ ∞) it gives the continuum theory
- Construction of the appropriate operators with their renormalization to extract physical quantities
- We take spacing a = a_S = a_T and size N_S × N_S × N_S × N_T, N_T > N_S (Hadron Spectrum Collaboration considers anisotropic lattices with a_T ∼ a_S/3 → better suited for study of excited states)

QCD on the lattice

● Discretization of space-time in 4 Euclidean dimensions → simplest isotropic hypercubic grid:

 \implies Rotation into imaginary time is the most drastic modification Lattice acts as a non-perturbative regularization scheme with the lattice spacing *a* providing an ultraviolet cutoff at $\pi/a \rightarrow$ no infinities

- Gauge fields are links and fermions are anticommuting Grassmann variables defined at each site of the lattice. They belong to the fundamental representation of SU(3)
- Construction of an appropriate action such that when $a \rightarrow 0$ (and Volume $\rightarrow \infty$) it gives the continuum theory
- Construction of the appropriate operators with their renormalization to extract physical quantities
- We take spacing a = a_S = a_T and size N_S × N_S × N_S × N_T, N_T > N_S (Hadron Spectrum Collaboration considers anisotropic lattices with a_T ∼ a_S/3 → better suited for study of excited states)

Lattice artifacts

- Finite Volume:
 - 1. Only discrete values of momentum in units of $2\pi/N_S$ are allowed.
 - 2. Finite volume effects need to be studied \rightarrow Take box sizes such that $L_S m_{\pi} \gtrsim 3.5$.
- Finite lattice spacing: Need at least three values of the lattice spacing in order to extrapolate to the continuum limit.

q²-values: Fourier transform of lattice results in coordinate space taken numerically → for large values of momentum transfer results are too noisy ⇒ Limited to Q² = -q² ~ 2 GeV². Studies to extend to larger values, H.-W. Lin, *et al.*, arXiv:1005.0799, H.-W. Lin and S. D. Cohen, arXiv:1104.4329

Computational cost

Simulation cost: $C_{\rm sim} \propto \left(\frac{300 {\rm MeV}}{m_{\pi}}\right)^{c_m} \left(\frac{L}{2 {\rm fm}}\right)^{c_L} \left(\frac{0.1 {\rm fm}}{a}\right)^{c_a}$

L=2.1 fm, a=0.089 fm, K. Jansen and C. Urbach, arXiv:0905.3331

Coefficients c_m , c_L and c_a depend on the discretized action used for the fermions.

State-of-the-art simulations use improved algorithms:

- Mass preconditioner, M. Hasenbusch, Phys. Lett. B519 (2001) 177
- Multiple time scales in the molecular dynamics updates

 \implies for twisted mass fermions: $c_m \sim 4$, $c_L \sim 5$ and $c_a \sim 6$.

- Simulations at physical quark masses, *a* ~ 0.1 fm and *L* ~ 5 fm require *O*(10) Pflop.Years.
- The analysis to produce physics results requires O(1) Pflop.Year.
- After post-diction of well measured quantities the goal is to predict quantities that are difficult or impossible to measure experimentally.

Mass of low-lying hadrons

 $N_F = 2 + 1$ smeared Clover fermions, BMW Collaboration, S. Dürr et al. Science 322 (2008) $N_F = 2$ twisted mass fermions, ETM Collaboration, C. Alexandrou et al. PRD (2008)

Good agreement between different discretization schemes \implies Significant progress in understanding the masses of low-lying mesons and baryons

 \rightarrow For Δ to N and Δ form factors we will use domain wall fermions (DWF)

Mass of low-lying hadrons

 $N_F = 2 + 1$ smeared Clover fermions, BMW Collaboration, S. Dürr et al. Science 322 (2008) $N_F = 2$ twisted mass fermions, ETM Collaboration, C. Alexandrou et al. PRD (2008)

Good agreement between different discretization schemes \Longrightarrow Significant progress in understanding the masses of low-lying mesons and baryons

\rightarrow For Δ to N and Δ form factors we will use domain wall fermions (DWF)

Resonance FFs in LQCD

Nucleon form factors

Experimental measurements since the 50's but still open questions \rightarrow high-precision experiments at JLab.

The electric and magnetic Sachs form factors:

 $G_E(q^2) = F_1(q^2) - \frac{q^2}{(2m)^2}F_2(q^2), \qquad G_M(q^2) = F_1(q^2) + F_2(q^2)$

- Many lattice studies down to lowest pion mass of m_π ∼ 300 MeV ⇒ Lattice data in general agreement, but still slower q²-slope
- Disconnected diagrams neglected so far

Nucleon form factors

Experimental measurements since the 50's but still open questions \rightarrow high-precision experiments at JLab.

The electric and magnetic Sachs form factors:

 $G_E(q^2) = F_1(q^2) - \frac{q^2}{(2m)^2}F_2(q^2), \qquad G_M(q^2) = F_1(q^2) + F_2(q^2)$

- Many lattice studies down to lowest pion mass of m_π ∼ 300 MeV ⇒ Lattice data in general agreement, but still slower q²-slope
- Disconnected diagrams neglected so far

Similar discrepancy also for the momentum fraction, C. A. et al. (ETMC), arXvi:1104:1600

Resonance FFs in LQCD

$N\gamma^* ightarrow \Delta$ form factors

- A dominant magnetic dipole, M1
- An electric quadrupole, E2 and a Coulomb, C2 signal a deformation in the nucleon/Δ
- 1/2-spin particles have vanishing quadrupole moment in the lab-frame
- Probe nucleon shape by studying transitions to its excited △-state
- Difficult to measure/calculate since quadrupole amplitudes are sub-dominant

- $R_{EM}(\text{EMR}) = -\frac{G_{E2}(O^2)}{G_{M1}(O^2)}$, $R_{SM}(\text{CMR}) = -\frac{|\vec{a}|}{2m_{\Delta}}\frac{G_{C2}(O^2)}{G_{M1}(O^2)}$, in lab frame of the Δ .
- Precise data strongly "suggesting" deformation in the Nucleon/ Δ At $Q^2 = 0.126 \text{ GeV}^2$: EMR= $(-2.00 \pm 0.40_{\text{stat+sys}} \pm 0.27_{\text{mod}})\%$, CMR= $(-6.27 \pm 0.32_{\text{stat+sys}} \pm 0.10_{\text{mod}})\%$

C. N. Papanicolas, Eur. Phys. J. A18 (2003); N. Sparveris et al., PRL 94, 022003 (2005)

$N\gamma^* ightarrow \Delta$ form factors

- A dominant magnetic dipole, M1
- An electric quadrupole, E2 and a Coulomb, C2 signal a deformation in the nucleon/Δ
- 1/2-spin particles have vanishing quadrupole moment in the lab-frame
- Probe nucleon shape by studying transitions to its excited △-state
- Difficult to measure/calculate since quadrupole amplitudes are sub-dominant

- I. Aznauryan *et al.*, CLAS, Phys. Rev. C 80 (2009) 055203
- New measurement of the Coulomb quadrupole amplitude in the low momentum transfer region (E08-010), N. Sparveris et al., Hall A

Thanks to N. Sparveris.

Lattice evaluation

$$\langle \Delta(p',s')|j_{\mu}|N(p,s)\rangle = i\sqrt{\frac{2}{3}} \left(\frac{m_{\Delta} m_{N}}{E_{\Delta}(\mathbf{p}') E_{N}(\mathbf{p})}\right)^{1/2} \bar{u}_{\sigma}(p',s') \left[\frac{G_{M1}^{*}(q^{2})K_{\sigma\mu}^{M1} + G_{E2}^{*}(q^{2})K_{\sigma\mu}^{E2} + G_{C2}^{*}K_{\sigma\mu}^{C2}\right] u(p,s)$$

• Evaluation of two-point and three-point functions

$$\begin{aligned} G(\vec{q},t) &= \sum_{\vec{x}_{f}} e^{-i\vec{x}_{f}\cdot\vec{q}} \Gamma_{\beta\alpha}^{4} \langle J_{\alpha}(\vec{x}_{f},t_{f})\overline{J}_{\beta}(0) \rangle \\ G^{\mu\nu}(\Gamma,\vec{q},t) &= \sum_{\vec{x}_{f},\vec{x}} e^{i\vec{x}\cdot\vec{q}} \Gamma_{\beta\alpha} \langle J_{\alpha}(\vec{x}_{f},t_{f})\mathcal{O}^{\mu}(\vec{x},t)\overline{J}_{\beta}(0) \rangle \end{aligned}$$

$$R_{\sigma}^{J}(t_{2},t_{1};\mathbf{p}',\mathbf{p};\Gamma_{\tau};\mu) = \frac{\langle G_{\sigma}^{\Delta J}\mu^{N}(t_{2},t_{1};\mathbf{p}',\mathbf{p};\Gamma_{\tau})\rangle}{\langle G_{ii}^{\Delta \Delta}(t_{2},\mathbf{p}';\Gamma_{4})\rangle} \left[\frac{\langle G_{ii}^{\Delta \Delta}(t_{2},\mathbf{p}';\Gamma_{4})\rangle}{\langle G^{NN}(t_{2},\mathbf{p};\Gamma_{4})\rangle} \frac{\langle G^{NN}(t_{2}-t_{1},\mathbf{p};\Gamma_{4})\rangle}{\langle G_{ii}^{\Delta \Delta}(t_{2}-t_{1},\mathbf{p}';\Gamma_{4})\rangle} \frac{\langle G^{NN}(t_{1},\mathbf{p}';\Gamma_{4})\rangle}{\langle G^{NN}(t_{1},\mathbf{p};\Gamma_{4})\rangle} \right]^{1/2}$$

ullet Construct optimized sources to isolate quadrupoles ightarrow three-sequential inversions needed

$$\begin{split} S_{1}^{J}(\mathbf{q};J) &= \sum_{\sigma=1}^{3} \Pi_{\sigma}^{J}(\mathbf{0},-\mathbf{q};\Gamma_{4};J) \quad , \qquad S_{2}^{J}(\mathbf{q};J) = \sum_{\sigma\neq k=1}^{3} \Pi_{\sigma}^{J}(\mathbf{0},-\mathbf{q};\Gamma_{k};J) \\ S_{3}^{J}(\mathbf{q};J) &= \Pi_{3}^{J}(\mathbf{0},-\mathbf{q};\Gamma_{3};J) - \frac{1}{2} \Big[\Pi_{1}^{J}(\mathbf{0},-\mathbf{q};\Gamma_{1};J) + \Pi_{2}^{J}(\mathbf{0},-\mathbf{q};\Gamma_{2};J) \Big] \end{split}$$

• Use the coherent sink technique: create four sets of forward propagators for each configuration at source positions separated in time by one-quarter of the total temporal size, Syritsyn et al. (LHPC), Phys. Rev. D81 (2009) 034507.

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.)

Resonance FFs in LQCD

Results on magnetic dipole

Slope smaller than experiment, underestimate G_{*M1} at low $Q^2 \rightarrow$ pion cloud effects?

New results using $N_f = 2 + 1$ dynamical Domain Wall Fermions, simulated by RBC-UKQCD Collaborations \implies No visible improvement. C. A., G.Koutsou, J.W. Negele, Y. Proestos, A. Tsapalis, Phys. Rev. D83 (2011)

Situation like for nucleon form factors, independent of lattice discretization

 \implies nucleon FFs under study by a number of lattice groups.

Results on EMR and CMR

Systematic errors may cancel in rations: G_{E2} and G_{C2} are suppressed at low Q^2 like G_{M1}^* \implies look at EMR and CMR

New results using $N_f = 2 + 1$ dynamical domain wall fermions by RBC-UKQCD Collaborations. Need large statistics to reduce the errors \implies as $m_{\pi} \rightarrow 140$ MeV $\mathcal{O}(10^3)$ need to be analyzed.

N - Δ axial-vector form factors

$$\langle \Delta(\boldsymbol{\rho}',\boldsymbol{s}') | A^{3}_{\mu} | \boldsymbol{N}(\boldsymbol{\rho},\boldsymbol{s}) \rangle = \mathcal{A} \bar{\boldsymbol{u}}^{\lambda}(\boldsymbol{\rho}',\boldsymbol{s}') \left[\left(\frac{C^{A}_{3}(\boldsymbol{q}^{2})}{m_{N}} \gamma^{\nu} + \frac{C^{A}_{4}(\boldsymbol{q}^{2})}{m_{N}^{2}} \boldsymbol{\rho}^{\prime \nu} \right) \left(g_{\lambda\mu} g_{\rho\nu} - g_{\lambda\rho} g_{\mu\nu} \right) \boldsymbol{q}^{\rho} + C^{A}_{5}(\boldsymbol{q}^{2}) g_{\lambda\mu} + \frac{C^{A}_{6}(\boldsymbol{q}^{2})}{m_{N}^{2}} \boldsymbol{q}_{\lambda} \boldsymbol{q}_{\mu} \right] \boldsymbol{u}(\boldsymbol{\rho},\boldsymbol{s}) \right] \boldsymbol{q}^{\rho} + C^{A}_{5}(\boldsymbol{q}^{2}) \boldsymbol{q}_{\lambda} \boldsymbol{q}_{\lambda} + \frac{C^{A}_{6}(\boldsymbol{q}^{2})}{m_{N}^{2}} \boldsymbol{q}_{\lambda} \boldsymbol{q}_{\mu}$$

 $\mathcal{A}=i\sqrt{\frac{2}{3}}\left(\frac{m_{\Delta}m_{N}}{E_{\Delta}(\mathbf{p}')E_{N}(\mathbf{p})}\right)^{1/2}$

- $C_5^A(q^2)$ analogous to the nucleon $G_A(q^2)$
- $C_6^A(q^2)$, analogous to the nucleon $G_p(q^2) \longrightarrow$ pion pole behaviour
- $C_3^A(q^2)$ and $C_4^A(q^2)$ are suppressed (transverse part of the axial-vector)
- Study also the pseudo-scalar transition form factor G_{πNΔ}(q²) ⇒ Non-diagonal Goldberger-Treiman relation:

$$C_5^A(q^2) + rac{q^2}{m_N^2} C_6^A(q^2) = rac{1}{2m_N} rac{G_{\pi N\Delta}(q^2) f_\pi m_\pi^2}{m_\pi^2 - q^2}$$

Pion pole dominance relates C_6^A to $G_{\pi N\Delta}$ through:

$$rac{1}{m_N} C_6^A(q^2) \sim rac{1}{2} rac{G_{\pi N\Delta}(q^2) f_\pi}{m_\pi^2 - q^2}$$

Goldberger-Treiman relation becomes

$$G_{\pi N\Delta}(q^2) f_{\pi} = 2m_N C_5^A(q^2)$$

N - Δ axial-vector form factors

$$\langle \Delta(\boldsymbol{p}',\boldsymbol{s}') | A^{3}_{\mu} | \boldsymbol{N}(\boldsymbol{p},\boldsymbol{s}) \rangle = \mathcal{A} \bar{\boldsymbol{u}}^{\lambda}(\boldsymbol{p}',\boldsymbol{s}') \left[\left(\frac{C^{A}_{3}(q^{2})}{m_{N}} \gamma^{\nu} + \frac{C^{A}_{4}(q^{2})}{m_{N}^{2}} \boldsymbol{p}'^{\nu} \right) \left(g_{\lambda\mu} g_{\rho\nu} - g_{\lambda\rho} g_{\mu\nu} \right) q^{\rho} + C^{A}_{5}(q^{2}) g_{\lambda\mu} + \frac{C^{A}_{6}(q^{2})}{m_{N}^{2}} q_{\lambda} q_{\mu} \right] \boldsymbol{u}(\boldsymbol{p},\boldsymbol{s}) \right] \boldsymbol{u}(\boldsymbol{p},\boldsymbol{s})$$

 $\mathcal{A}=i\sqrt{\frac{2}{3}}\left(\frac{m_{\Delta}m_{N}}{E_{\Delta}(\mathbf{p}')E_{N}(\mathbf{p})}\right)^{1/2}$

- $C_5^A(q^2)$ analogous to the nucleon $G_A(q^2)$
- $C_6^A(q^2)$, analogous to the nucleon $G_p(q^2) \longrightarrow$ pion pole behaviour
- $C_3^A(q^2)$ and $C_4^A(q^2)$ are suppressed (transverse part of the axial-vector)
- Study also the pseudo-scalar transition form factor G_{πNΔ}(q²) ⇒ Non-diagonal Goldberger-Treiman relation:

$$C_5^A(q^2) + rac{q^2}{m_N^2} C_6^A(q^2) = rac{1}{2m_N} rac{G_{\pi N\Delta}(q^2) f_\pi m_\pi^2}{m_\pi^2 - q^2}$$

Pion pole dominance relates C_6^A to $G_{\pi N\Delta}$ through:

$$rac{1}{m_{N}} C_{6}^{A}(q^{2}) \sim rac{1}{2} rac{G_{\pi\,N\Delta}(q^{2}) f_{\pi}}{m_{\pi}^{2}-q^{2}}$$

Goldberger-Treiman relation becomes

$$G_{\pi N\Delta}(q^2) f_{\pi} = 2m_N C_5^A(q^2)$$

Results on Δ to N axial-vector form factors

Results on Δ to N axial-vector form factors

 $\pi N\Delta$ pseudoscalar coupling Pseudoscalar current: $P^{a}(x) = \overline{\psi}(x)\gamma_{5}\frac{\tau^{a}}{2}\psi(x)$

A-N matrix element:

$$2m_{q} \langle \Delta(p', s') | P^{3} | N(p, s) \rangle = i \sqrt{\frac{2}{3}} \left(\frac{m_{\Delta}m_{N}}{E_{\Delta}(p')E_{N}(p)} \right)^{1/2} t_{\pi} \frac{m_{\pi}^{2} G_{\pi}_{N\Delta}(Q^{2})}{m_{\pi}^{2} + Q^{2}} \bar{u}^{\nu}(p', s') \frac{q_{\nu}}{2m_{N}} u(p, s)$$

• Fit to: $G_{\pi N\Delta}(Q^{2}) = K \frac{(Q^{2}/m_{\pi}^{2} + 1)}{(Q^{2}/m_{C_{5}}^{2} + 1)^{2}(Q^{2}/m_{C_{6}}^{2} + 1)}$

$$20 \frac{1}{10} \frac{1}{10}$$

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.)

Δ electromagnetic form factors

$$\Delta(\rho',s')|j^{\mu}(0)|\Delta(\rho,s)\rangle = -\bar{u}_{\alpha}(\rho',s') \left\{ \left[F_{1}^{*}(Q^{2})g^{\alpha\beta} + F_{3}^{*}(Q^{2})\frac{q^{\alpha}q^{\beta}}{(2M_{\Delta})^{2}} \right] \gamma^{\mu} + \left[F_{2}^{*}(Q^{2})g^{\alpha\beta} + F_{4}^{*}(Q^{2})\frac{q^{\alpha}q^{\beta}}{(2M_{\Delta})^{2}} \right] \frac{i\sigma^{\mu\nu}q_{\nu}}{2M_{\Delta}} \right\} u_{\beta}(\rho,s)$$

with e.g. the quadrupole form factor given by: $G_{E2} = (F_1^* - \tau F_2^*) - \frac{1}{2}(1 + \tau) (F_3^* - \tau F_4^*)$, where $\tau \equiv Q^2/(4M_{\Delta}^2)$ Construct an optimized source to isolate $G_{E2} \rightarrow$ additional sequential propagators needed. Neglect disconnected contributions in this evaluation.

Transverse charge density of a Δ polarized along the x-axis can be defined in the infinite momentum frame $\rightarrow \rho_{T\frac{3}{2}}^{\Delta}(\vec{b})$ and $\rho_{T\frac{1}{2}}^{\Delta}(\vec{b})$.

Using G_{E2} we can predict 'shape' of Δ .

 Δ with spin 3/2 projection elongated along spin axis compared to the Ω^- C. A., T. Korzec, G. Koutsou, C. Lorcé, J. W. Negele, V. Pascalutsa, A. Tsapalis, M. Vanderhaeghen, NPA825,115 (2009).

Δ axial-vector form factors

Axial-vector current: $A^a_{\mu}(x) = \overline{\psi}(x)\gamma_{\mu}\gamma_{5}\frac{\tau^{a}}{2}\psi(x)$

$$\Delta(\rho',s')|A^{3}_{\mu}(0)|\Delta(\rho,s)\rangle = -\bar{u}_{\alpha}(\rho',s')\frac{1}{2}\left[-g^{\alpha\beta}\left(g_{1}(q^{2})\gamma^{\mu}\gamma^{5}+g_{3}(q^{2})\frac{q^{\mu}}{2M_{\Delta}}\gamma^{5}\right) + \frac{q^{\alpha}q^{\beta}}{4M_{\Delta}^{2}}\left(h_{1}(q^{2})\gamma^{\mu}\gamma^{5}+h_{3}(q^{2})\frac{q^{\mu}}{2M_{\Delta}}\gamma^{5}\right)\right]u_{\beta}(\rho,s)$$

i.e. 4 axial form-factors, g_1, g_3, h_1 and $h_3 \longrightarrow$ at $q^2 = 0$ we can extract the Δ axial charge

PRELIMINARY

 \implies Using a consistent chiral perturbation theory framework extract the chiral Lagrangian couplings g_A , c_A , g_Δ from a combined chiral fit to the lattice results on the nucleon and Δ axial charge and the axial N-to- Δ form factor $C_5(0)$.

C. A., E. Gregory, T. Korzec, G. Koutsou, J. W. Negele, T. Sato, A. Tsapalis, arXiv:1011.0411

Δ axial-vector form factors

Axial-vector current: $A^a_{\mu}(x) = \overline{\psi}(x)\gamma_{\mu}\gamma_{5}\frac{\tau^{a}}{2}\psi(x)$

$$\Delta(\rho',s')|A^{3}_{\mu}(0)|\Delta(\rho,s)\rangle = -\bar{u}_{\alpha}(\rho',s')\frac{1}{2}\left[-g^{\alpha\beta}\left(g_{1}(q^{2})\gamma^{\mu}\gamma^{5}+g_{3}(q^{2})\frac{q^{\mu}}{2M_{\Delta}}\gamma^{5}\right) + \frac{q^{\alpha}q^{\beta}}{4M_{\Delta}^{2}}\left(h_{1}(q^{2})\gamma^{\mu}\gamma^{5}+h_{3}(q^{2})\frac{q^{\mu}}{2M_{\Delta}}\gamma^{5}\right)\right]u_{\beta}(\rho,s)$$

i.e. 4 axial form-factors, g_1, g_3, h_1 and $h_3 \rightarrow$ at $q^2 = 0$ we can extract the Δ axial charge

PRELIMINARY

 \implies Using a consistent chiral perturbation theory framework extract the chiral Lagrangian couplings g_A , c_A , g_Δ from a combined chiral fit to the lattice results on the nucleon and Δ axial charge and the axial N-to- Δ form factor $C_5(0)$.

C. A., E. Gregory, T. Korzec, G. Koutsou, J. W. Negele, T. Sato, A. Tsapalis, arXiv:1011.0411

Δ pseudoscalar couplings

Pseudoscalar current: $P^{a}(x) = \overline{\psi}(x)\gamma_{5}\frac{\tau^{a}}{2}\psi(x)$

Δ – Δ matrix element:

 $\langle \Delta(p',s')|P^3(0)|\Delta(p,s)\rangle = -\bar{u}_{\alpha}(p',s')\frac{1}{2} \left[-g^{\alpha\beta}\tilde{g}(q^2)\gamma^5 + \frac{q^{\alpha}q^{\beta}}{4M_{\Delta}^2}\tilde{h}(q^2)\gamma^5 \right] u_{\beta}(p,s)$

i.e. two $\pi\Delta\Delta$ couplings \implies two Goldberger-Treiman relations.

• $G_{\pi\Delta\Delta}$ is given by: $m_q \tilde{g}(Q^2) \equiv \frac{t_\pi m_\pi^2 G_{\pi\Delta\Delta}(Q^2)}{(m_\pi^2 + Q^2)}$ and $H_{\pi\Delta\Delta}$ is given by: $m_q \tilde{h}(Q^2) \equiv \frac{t_\pi m_\pi^2 H_{\pi\Delta\Delta}(Q^2)}{(m_\pi^2 + Q^2)}$

• Goldberger-Treiman relations: $f_{\pi}G_{\pi\Delta\Delta}(Q^2) = m_{\Delta}g_1(Q^2), \qquad f_{\pi}H_{\pi\Delta\Delta}(Q^2) = m_{\Delta}h_1(Q^2)$

C. A., E. Gregory, T. Korzec, G. Koutsou, J. W. Negele, T. Sato, A. Tsapalis, arXiv:1011.0411

ρ -meson width

- Consider $\pi^+\pi^-$ in the I = 1-channel
- Estimate P-wave scattering phase shift δ₁₁(k) using finite size methods
- Use Lüscher's relation between energy in a finite box and the phase in infinite volume
- Use Center of Mass frame and Moving frame
- Use effective range formula: $tan\delta_{11}(k) = \frac{g_{\rho\pi\pi}^2}{6\pi} \frac{k^3}{E(m_R^2 E^2)}, k = \sqrt{E^2/4 m_\pi^2} \rightarrow \text{determine } M_R \text{ and}$ $g_{\rho\pi\pi}$ and then extract $\Gamma_{\rho} = \frac{g_{\rho\pi\pi}^2}{6\pi} \frac{k_R^3}{m_R^2}, \ k_R = \sqrt{m_R^2/4 - m_\pi^2}$

 $m_{\pi}=$ 309 MeV, L= 2.8 fm

N_F = 2 twisted mass fermions, Xu Feng, K. Jansen, D. Renner, arXiv:0910:4891; arXiv:1011.5288

ρ -meson width

- Consider $\pi^+\pi^-$ in the I = 1-channel
- Estimate P-wave scattering phase shift δ₁₁(k) using finite size methods
- Use Lüscher's relation between energy in a finite box and the phase in infinite volume
- Use Center of Mass frame and Moving frame
- Use effective range formula: $\tan \delta_{11}(k) = \frac{g_{\rho\pi\pi}^2}{6\pi} \frac{k^3}{E(m_R^2 E^2)}, k = \sqrt{E^2/4 m_{\pi}^2} \rightarrow \text{determine } M_R \text{ and } g_{\rho\pi\pi} \text{ and then extract } \Gamma_{\rho} = \frac{g_{\rho\pi\pi}^2}{6\pi} \frac{k_R^3}{m_R^2}, k_R = \sqrt{m_R^2/4 m_{\pi}^2}$

 $m_{\pi}=$ 309 MeV, L= 2.8 fm

N_F = 2 twisted mass fermions, Xu Feng, K. Jansen, D. Renner, arXiv:0910:4891; arXiv:1011.5288

 Large scale simulations using the underlying theory of the Strong Interactions have made spectacular progress

⇒ we now have simulations of the full theory at near physical parameters

- The low-lying hadron spectrum is reproduced
- Nucleon form factors are being computed by a number of collaborations in order to understand the discrepancies
- N to △ transition form factors can be extracted in a similar way to the nucleon Ratios of form factors expected to be less affected by lattice artifacts → EMR and CMR allow comparison to experiment
- Δ form factors are predicted
- Resonance width can be computed within Euclidean Lattice QCD as illustrated for the ρ-meson → similar techniques can be applied to Δ
 ⇒ Complete description of the nucleon-Δ system

 Large scale simulations using the underlying theory of the Strong Interactions have made spectacular progress

→ we now have simulations of the full theory at near physical parameters

The low-lying hadron spectrum is reproduced

- Nucleon form factors are being computed by a number of collaborations in order to understand the discrepancies
- In to △ transition form factors can be extracted in a similar way to the nucleon Ratios of form factors expected to be less affected by lattice artifacts → EMR and CMR allow comparison to experiment
- △ form factors are predicted
- Resonance width can be computed within Euclidean Lattice QCD as illustrated for the ρ-meson → similar techniques can be applied to Δ
 ⇒ Complete description of the nucleon-Δ system

 Large scale simulations using the underlying theory of the Strong Interactions have made spectacular progress

→ we now have simulations of the full theory at near physical parameters

- The low-lying hadron spectrum is reproduced
- Nucleon form factors are being computed by a number of collaborations in order to understand the discrepancies
- In to △ transition form factors can be extracted in a similar way to the nucleon Ratios of form factors expected to be less affected by lattice artifacts → EMR and CMR allow comparison to experiment
- Δ form factors are predicted
- Resonance width can be computed within Euclidean Lattice QCD as illustrated for the ρ-meson → similar techniques can be applied to Δ
 ⇒ Complete description of the nucleon-Δ system

 Large scale simulations using the underlying theory of the Strong Interactions have made spectacular progress

→ we now have simulations of the full theory at near physical parameters

- The low-lying hadron spectrum is reproduced
- Nucleon form factors are being computed by a number of collaborations in order to understand the discrepancies
- In to △ transition form factors can be extracted in a similar way to the nucleon Ratios of form factors expected to be less affected by lattice artifacts → EMR and CMR allow comparison to experiment

A form factors are predicted

 Resonance width can be computed within Euclidean Lattice QCD as illustrated for the ρ-meson → similar techniques can be applied to Δ
 Complete descriptions of the purplete

 \implies Complete description of the nucleon- Δ system

 Large scale simulations using the underlying theory of the Strong Interactions have made spectacular progress

→ we now have simulations of the full theory at near physical parameters

- The low-lying hadron spectrum is reproduced
- Nucleon form factors are being computed by a number of collaborations in order to understand the discrepancies
- In to △ transition form factors can be extracted in a similar way to the nucleon Ratios of form factors expected to be less affected by lattice artifacts → EMR and CMR allow comparison to experiment
- △ form factors are predicted
- Resonance width can be computed within Euclidean Lattice QCD as illustrated for the ρ-meson → similar techniques can be applied to Δ
 ⇒ Complete description of the nucleon-Δ system

 Large scale simulations using the underlying theory of the Strong Interactions have made spectacular progress

→ we now have simulations of the full theory at near physical parameters

- The low-lying hadron spectrum is reproduced
- Nucleon form factors are being computed by a number of collaborations in order to understand the discrepancies
- In to △ transition form factors can be extracted in a similar way to the nucleon Ratios of form factors expected to be less affected by lattice artifacts → EMR and CMR allow comparison to experiment
- △ form factors are predicted
- Resonance width can be computed within Euclidean Lattice QCD as illustrated for the ρ-meson → similar techniques can be applied to Δ

 \implies Complete description of the nucleon- Δ system

 Large scale simulations using the underlying theory of the Strong Interactions have made spectacular progress

→ we now have simulations of the full theory at near physical parameters

- The low-lying hadron spectrum is reproduced
- Nucleon form factors are being computed by a number of collaborations in order to understand the discrepancies
- In to △ transition form factors can be extracted in a similar way to the nucleon Ratios of form factors expected to be less affected by lattice artifacts → EMR and CMR allow comparison to experiment
- △ form factors are predicted
- Resonance width can be computed within Euclidean Lattice QCD as illustrated for the ρ-meson → similar techniques can be applied to Δ

 \implies Complete description of the nucleon- Δ system

Thank you for your attention

Δ axial-vector form factors

Axial-vector current: $A^{a}_{\mu}(x) = \overline{\psi}(x)\gamma_{\mu}\gamma_{5}\frac{\tau^{a}}{2}\psi(x)$

$$\Delta(\rho',s')|A^{3}_{\mu}(0)|\Delta(\rho,s)\rangle = -\bar{u}_{\alpha}(\rho',s')\frac{1}{2}\left[-g^{\alpha\beta}\left(g_{1}(q^{2})\gamma^{\mu}\gamma^{5}+g_{3}(q^{2})\frac{q^{\mu}}{2M_{\Delta}}\gamma^{5}\right) + \frac{q^{\alpha}q^{\beta}}{4M_{\Delta}^{2}}\left(h_{1}(q^{2})\gamma^{\mu}\gamma^{5}+h_{3}(q^{2})\frac{q^{\mu}}{2M_{\Delta}}\gamma^{5}\right)\right]u_{\beta}(\rho,s)$$

i.e. 4 axial form-factors, g_1, g_3, h_1 and $h_3 \longrightarrow$ at $q^2 = 0$ we can extract the Δ axial charge

PRELIMINARY

⇒ Using a consistent chiral perturbation theory framework extract the chiral Lagrangian couplings g_A , c_A , g_Δ from a combined chiral fit to the lattice results on the nucleon and Δ axial charge and the axial N-to- Δ form factor $C_5(0)$. C. A., E. Gregory, T. Korzec, G. Koutsou, J. W. Negele, T. Sato, A. Tsapalis, arXiv:1011.0411

Δ axial-vector form factors

Axial-vector current: $A^{a}_{\mu}(x) = \overline{\psi}(x)\gamma_{\mu}\gamma_{5}\frac{\tau^{a}}{2}\psi(x)$

$$\Delta(\rho',s')|A^{3}_{\mu}(0)|\Delta(\rho,s)\rangle = -\bar{u}_{\alpha}(\rho',s')\frac{1}{2}\left[-g^{\alpha\beta}\left(g_{1}(q^{2})\gamma^{\mu}\gamma^{5}+g_{3}(q^{2})\frac{q^{\mu}}{2M_{\Delta}}\gamma^{5}\right) + \frac{q^{\alpha}q^{\beta}}{4M_{\Delta}^{2}}\left(h_{1}(q^{2})\gamma^{\mu}\gamma^{5}+h_{3}(q^{2})\frac{q^{\mu}}{2M_{\Delta}}\gamma^{5}\right)\right]u_{\beta}(\rho,s)$$

i.e. 4 axial form-factors, g_1, g_3, h_1 and $h_3 \longrightarrow$ at $q^2 = 0$ we can extract the Δ axial charge

PRELIMINARY

 \implies Using a consistent chiral perturbation theory framework extract the chiral Lagrangian couplings g_A , c_A , g_Δ from a combined chiral fit to the lattice results on the nucleon and Δ axial charge and the axial N-to- Δ form factor $C_5(0)$.

C. A., E. Gregory, T. Korzec, G. Koutsou, J. W. Negele, T. Sato, A. Tsapalis, arXiv:1011.0411

Shape of ρ -meson

Four-point functions $\stackrel{\text{non-relativistic limit}}{\rightarrow} |\psi|^2$

The ρ-meson having spin=1 is cigar-like in the lab frame, C. A. and G. Koutsou, Phys. Rev. D78 (2008) 094506 In agreement with form factor calculation J.N. Hedditch *et al.* Phys. Rev. D75, 094504 (2007)

Lattice spacing determination

- Use nucleon mass at physical limit
- Extrapolate using LO expansion: $m_N = m_N^0 4c_1 m_\pi^2 \frac{3g_A^2}{16\pi f_\pi^2} m_\pi^3$
- Systematic error from O(p⁴) SSE HBχPT
- Simultaneous fits to $\beta = 1.9$, $\beta = 1.95$ and $\beta = 2.1$ results

$\beta = 1.90$: <i>a</i> = 0.087(1)(6)
β = 1.95	: <i>a</i> = 0.078(1)(5)
B - 2 10	a = 0.060(0)(3)