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Motivation

∆ to Nucleon transition form factors:
I Electromagnetic form factors are known experimentally; In particular G∗M1 is precisely measured
→ can we reproduce it from lattice QCD?

I Quadrupole γ∗N → ∆ form factors GE2 and GC2 may indicate deformation in the nucleon/∆
→ can we calculate them from lattice QCD?

I Provide input on axial-vector FFs

F Understand the q2-dependence of axial form factors CA
5 and CA

6 that correspond to the
nucleon axial form factor GA and nucleon induced pseudoscalar form factor Gp

F Provide important input for phenomenological models builders and for chiral effective
theories

I Evaluate πN∆ coupling and examine the non-diagonal Goldberger-Treiman relation

Form factors of the ∆:
I Difficult to measure experimentally
I Electromagnetic form factors→ magnetic moment of ∆, quadrupole moment

=⇒ obtain information on its charge distribution in the infinite momentum frame (talk by M.
Vanderhaeghen)

I Study the axial-vector and pseudoscalar form factors =⇒ New features arise e.g. two
Goldberger-Treiman relations

=⇒ Calculate within lattice QCD the form factors of the nucleon/∆ system→ global fit
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QCD on the lattice

a 

µ 

Uµ(n)=eigaAµ(n)  
ψ(n) 

Discretization of space-time in 4 Euclidean dimensions→ simplest
isotropic hypercubic grid:
=⇒ Rotation into imaginary time is the most drastic modification
Lattice acts as a non-perturbative regularization scheme with the
lattice spacing a providing an ultraviolet cutoff at π/a→ no infinities

Gauge fields are links and fermions are anticommuting Grassmann
variables defined at each site of the lattice. They belong to the
fundamental representation of SU(3)

Construction of an appropriate action such that when a→ 0 (and
Volume→∞) it gives the continuum theory

Construction of the appropriate operators with their renormalization to
extract physical quantities

We take spacing a = aS = aT and size NS × NS × NS × NT ,
NT > NS (Hadron Spectrum Collaboration considers anisotropic
lattices with aT ∼ aS/3→ better suited for study of excited states)
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lattices with aT ∼ aS/3→ better suited for study of excited states)

Lattice artifacts

Finite Volume:
1. Only discrete values of momentum in units of 2π/NS are allowed.

2. Finite volume effects need to be studied→ Take box sizes such that LSmπ
>∼ 3.5.

Finite lattice spacing: Need at least three values of the lattice spacing in order to extrapolate to the
continuum limit.

q2-values: Fourier transform of lattice results in coordinate space taken numerically→ for large values
of momentum transfer results are too noisy =⇒ Limited to Q2 = −q2 ∼ 2 GeV2.
Studies to extend to larger values, H.-W. Lin, et al., arXiv:1005.0799, H.-W. Lin and S. D. Cohen,
arXiv:1104.4329
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Computational cost

Simulation cost: Csim ∝
(

300MeV
mπ

)cm ( L
2fm

)cL
( 0.1fm

a

)ca

L=2.1 fm, a=0.089 fm, K. Jansen and C. Urbach,
arXiv:0905.3331

Coefficients cm, cL and ca depend on the discretized
action used for the fermions.
State-of-the-art simulations use improved algorithms:

Mass preconditioner, M. Hasenbusch, Phys.
Lett. B519 (2001) 177

Multiple time scales in the molecular dynamics
updates

=⇒ for twisted mass fermions: cm ∼ 4, cL ∼ 5 and
ca ∼ 6.

Simulations at physical quark masses,
a ∼ 0.1 fm and L ∼ 5 fm require
O(10) Pflop.Years.

The analysis to produce physics results
requires O(1) Pflop.Year.

After post-diction of well measured quantities
the goal is to predict quantities that are difficult
or impossible to measure experimentally.

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Resonance FFs in LQCD Jefferson Lab, May 18, 2011 5 / 24



Mass of low-lying hadrons

NF = 2 + 1 smeared Clover fermions, BMW Collaboration, S. Dürr et al. Science 322 (2008)
NF = 2 twisted mass fermions, ETM Collaboration, C. Alexandrou et al. PRD (2008)

BMW with NF = 2 + 1:
I 3 lattice spacings:

a ∼ 0.125, 0.085, 0.065 fm set by mΞ

I Pion masses: mπ
∼
> 190 MeV

I Volumes:mmin
π L

∼
> 4

ETMC with NF = 2:
I 3 lattice spacings:

a = 0.089, 0.070, a = 0.056 fm, set my
mN

I mπ
∼
> 260 MeV

I Volumes:mmin
π L

∼
> 3.3

Good agreement between different discretization schemes =⇒ Significant progress in understanding the
masses of low-lying mesons and baryons

→ For ∆ to N and ∆ form factors we will use domain wall fermions (DWF)
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Nucleon form factors
Experimental measurements since the 50’s but still open questions→ high-precision experiments at JLab.

The electric and magnetic Sachs form factors:

GE (q2) = F1(q2)− q2

(2m)2 F2(q2), GM (q2) = F1(q2) + F2(q2)

I Many lattice studies down to lowest pion mass of
mπ ∼ 300 MeV=⇒ Lattice data in general agreement, but still
slower q2-slope

I Disconnected diagrams neglected so far

Axial-vector FFs: Aa
µ = ψ̄γµγ5

τa
2 ψ(x)

=⇒ 1
2

[
γµγ5GA(q2) +

qµγ5
2m Gp(q2)

]

(!x, t)

(!xi, ti)

!q = !pf − !pi

OΓ

!q = !pf − !pi

(!x, t)

(!xi, ti)(!xf , tf)

(!xf , tf)

OΓ

C. A. et al. (ETMC), Phys. Rev. D83 (2011) 045010
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Similar discrepancy also for the momentum fraction, C. A. et al. (ETMC), arXvi:1104:1600
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Nγ∗ → ∆ form factors

A dominant magnetic dipole, M1

An electric quadrupole, E2 and a Coulomb, C2
signal a deformation in the nucleon/∆

1/2-spin particles have vanishing quadrupole
moment in the lab-frame

Probe nucleon shape by studying transitions to
its excited ∆-state

Difficult to measure/calculate since quadrupole
amplitudes are sub-dominant

REM (EMR) = − GE2(Q2)

GM1(Q2)
,

RSM (CMR) = − |~q|2m∆

GC2(Q2)

GM1(Q2)
,

in lab frame of the ∆.

Precise data strongly “suggesting” deformation
in the Nucleon/∆
At Q2 = 0.126 GeV2:
EMR=(−2.00± 0.40stat+sys ± 0.27mod)%,
CMR=(−6.27± 0.32stat+sys ± 0.10mod)%

C. N. Papanicolas, Eur. Phys. J. A18 (2003); N. Sparveris et al., PRL 94, 022003 (2005)
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A dominant magnetic dipole, M1

An electric quadrupole, E2 and a Coulomb, C2
signal a deformation in the nucleon/∆

1/2-spin particles have vanishing quadrupole
moment in the lab-frame

Probe nucleon shape by studying transitions to
its excited ∆-state

Difficult to measure/calculate since quadrupole
amplitudes are sub-dominant

Thanks to N. Sparveris.

I. Aznauryan et al., CLAS, Phys. Rev. C 80
(2009) 055203

New measurement of the Coulomb quadrupole
amplitude in the low momentum transfer region
(E08-010) , N. Sparveris et al., Hall A
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Lattice evaluation

〈∆(p′, s′)|jµ|N(p, s)〉 = i

√
2
3

(
m∆ mN

E∆(p′) EN (p)

)1/2
ūσ(p′, s′)

[
G∗M1(q2)K M1

σµ + G∗E2(q2)K E2
σµ + G∗C2K C2

σµ

]
u(p, s)

• Evaluation of two-point and three-point functions

G(~q, t) =
∑
~xf

e−i~xf ·~q Γ4
βα 〈Jα(~xf , tf )Jβ(0)〉

Gµν(Γ,~q, t) =
∑
~xf ,~x

ei~x·~q Γβα 〈Jα(~xf , tf )Oµ(~x, t)Jβ(0)〉

q = p′ − p

(x, t)

(xi, ti)(xf , tf)

OΓ

RJ
σ (t2, t1 ; p ′, p ; Γτ ;µ) =

〈G
∆JµN
σ (t2, t1 ; p ′, p; Γτ )〉

〈G∆∆
ii (t2, p ′ ; Γ4)〉

[ 〈G∆∆
ii (t2, p ′ ; Γ4)〉

〈GNN (t2, p; Γ4)〉

〈GNN (t2 − t1, p; Γ4)〉 〈G∆∆
ii (t1, p ′ ; Γ4)〉

〈G∆∆
ii (t2 − t1, p ′ ; Γ4)〉 〈GNN (t1, p; Γ4)〉

]1/2

• Construct optimized sources to isolate quadrupoles→ three-sequential inversions needed

SJ
1 (q; J) =

3∑
σ=1

ΠJ
σ(0,−q ; Γ4; J) , SJ

2 (q; J) =
3∑

σ 6=k=1

ΠJ
σ(0,−q ; Γk ; J)

SJ
3 (q; J) = ΠJ

3(0,−q ; Γ3; J)−
1
2

[
ΠJ

1(0,−q ; Γ1; J) + ΠJ
2(0,−q ; Γ2; J)

]

• Use the coherent sink technique: create four sets of forward propagators for each configuration at source

positions separated in time by one-quarter of the total temporal size, Syritsyn et al. (LHPC), Phys. Rev. D81

(2009) 034507.
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Results on magnetic dipole

Slope smaller than experiment, underestimate
G∗M1 at low Q2 → pion cloud effects?

New results using Nf = 2 + 1 dynamical Domain
Wall Fermions, simulated by RBC-UKQCD Collab-
orations =⇒ No visible improvement.
C. A., G.Koutsou, J.W. Negele, Y. Proestos, A.
Tsapalis, Phys. Rev. D83 (2011)

Situation like for nucleon form factors, independent of lattice discretization

=⇒ nucleon FFs under study by a number of lattice groups.
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Results on EMR and CMR

Systematic errors may cancel in rations: GE2 and GC2 are suppressed at low Q2 like G∗M1
=⇒ look at EMR and CMR

New results using Nf = 2 + 1 dynamical domain wall fermions by RBC-UKQCD Collaborations
Need large statistics to reduce the errors =⇒ as mπ → 140 MeV O(103) need to be analyzed.
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N - ∆ axial-vector form factors

〈∆(p′, s′)|A3
µ|N(p, s)〉 = Aūλ(p′, s′)

[ CA
3 (q2)

mN
γ
ν +

CA
4 (q2)

m2
N

p′ν
(gλµgρν − gλρgµν

)
qρ+CA

5 (q2)gλµ+
CA

6 (q2)

m2
N

qλqµ

]
u(p, s)

A = i
√

2
3

(
m∆mN

E∆(p′)EN (p)

)1/2

CA
5 (q2) analogous to the nucleon GA(q2)

CA
6 (q2), analogous to the nucleon Gp(q2) −→ pion pole behaviour

CA
3 (q2) and CA

4 (q2) are suppressed (transverse part of the axial-vector)

Study also the pseudo-scalar transition form factor GπN∆(q2)
=⇒ Non-diagonal Goldberger-Treiman relation:

CA
5 (q2) +

q2

m2
N

CA
6 (q2) =

1
2mN

GπN∆(q2)fπm2
π

m2
π − q2

.

Pion pole dominance relates CA
6 to GπN∆ through:

1
mN

CA
6 (q2) ∼

1
2

GπN∆(q2)fπ
m2
π − q2

Goldberger-Treiman relation becomes

GπN∆(q2) fπ = 2mN CA
5 (q2)
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Results on ∆ to N axial-vector form factors
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Results on ∆ to N axial-vector form factors
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Goldberger-Treiman rel.: GπN∆(Q2)fπ = 2mN CA
5 (Q2)
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πN∆ pseudoscalar coupling
Pseudoscalar current: Pa(x) = ψ(x)γ5

τa
2 ψ(x)

∆-N matrix element:

2mq〈∆(p′, s′)|P3|N(p, s)〉 = i

√
2

3

(
m∆mN

E∆(p′)EN (p)

)1/2 fπm2
π GπN∆(Q2)

m2
π + Q2

ūν (p′, s′)
qν

2mN
u(p, s)

Fit to: GπN∆(Q2) = K (Q2/m2
π+1)

(Q2/m2
C5

+1)2(Q2/m2
C6

+1)

0
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0 0.5 1 1.5 2

G
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N

∆
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DWF, mπ = 297 MeV

In a previous study: Nf = 2 Wilson results consistent with GπN∆(Q2) ∼ 1.6GπNN (Q2)
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∆ electromagnetic form factors

〈∆(p′, s′)|jµ(0)|∆(p, s)〉 = −ūα(p′, s′)


F∗1 (Q2)gαβ + F∗3 (Q2)

qαqβ

(2M∆)2

 γµ +

F∗2 (Q2)gαβ + F∗4 (Q2)
qαqβ

(2M∆)2

 iσµν qν

2M∆

 uβ (p, s)

with e.g. the quadrupole form factor given by: GE2 =
(

F∗1 − τF∗2
)
− 1

2 (1 + τ)
(

F∗3 − τF∗4
)

, where τ ≡ Q2/(4M2
∆)

Construct an optimized source to isolate GE2 → additional sequential propagators needed.
Neglect disconnected contributions in this evaluation.

Transverse charge density of a ∆ polarized along the x-axis can be defined in the infinite momentum frame→
ρ∆

T 3
2

(~b) and ρ∆

T 1
2

(~b).

Using GE2 we can predict ’shape’ of ∆.
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∆ with spin 3/2 projection elongated along spin axis compared to the Ω−

C. A., T. Korzec, G. Koutsou, C. Lorcé, J. W. Negele, V. Pascalutsa, A. Tsapalis, M. Vanderhaeghen, NPA825 ,115 (2009).
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∆ axial-vector form factors
Axial-vector current: Aa

µ(x) = ψ(x)γµγ5
τa
2 ψ(x)

〈∆(p′, s′)|A3
µ(0)|∆(p, s)〉 = −ūα(p′, s′)

1

2

−gαβ
(

g1(q2)γµγ5 + g3(q2)
qµ

2M∆

γ
5
)

+
qαqβ

4M2
∆

(
h1(q2)γµγ5 + h3(q2)

qµ

2M∆

γ
5
) uβ (p, s)

i.e. 4 axial form-factors, g1, g3, h1 and h3 −→ at q2 = 0 we can extract the ∆ axial charge

PRELIMINARY
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∆ pseudoscalar couplings

Pseudoscalar current: Pa(x) = ψ(x)γ5
τa
2 ψ(x)

∆−∆ matrix element:

〈∆(p′, s′)|P3(0)|∆(p, s)〉 = −ūα(p′, s′) 1
2

[
−gαβ g̃(q2)γ5 + qαqβ

4M2
∆

h̃(q2)γ5
]

uβ(p, s)

i.e. two π∆∆ couplings =⇒ two Goldberger-Treiman relations.

Gπ∆∆ is given by: mq g̃(Q2) ≡ fπm2
πGπ∆∆(Q2)

(m2
π+Q2)

and Hπ∆∆ is given by: mq h̃(Q2) ≡ fπm2
πHπ∆∆(Q2)

(m2
π+Q2)

Goldberger-Treiman relations: fπGπ∆∆(Q2) = m∆g1(Q2), fπHπ∆∆(Q2) = m∆h1(Q2)
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ρ-meson width

Consider π+π− in the I = 1-channel

Estimate P-wave scattering phase shift δ11(k) using finite size methods

Use Lüscher’s relation between energy in a finite box and the phase in infinite volume

Use Center of Mass frame and Moving frame

Use effective range formula: tanδ11(k) =
g2
ρππ
6π

k3

E
(

m2
R−E2

) , k =
√

E2/4− m2
π → determine MR and

gρππ and then extract Γρ =
g2
ρππ
6π

k3
R

m2
R
, kR =

√
m2

R/4− m2
π
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0.3 0.35 0.4 0.45 0.5 0.55 0.6
aE

CM

0

0.5

1

si
n2 (δ

)

CMF
MF1
MF2
sin

2
(δ)=1=>aM

R

NF = 2 twisted mass fermions, Xu Feng, K. Jansen, D. Renner, arXiv:0910:4891; arXiv:1011.5288
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Conclusions

Large scale simulations using the underlying theory of the Strong Interactions have made spectacular
progress
=⇒ we now have simulations of the full theory at near physical parameters

The low-lying hadron spectrum is reproduced

Nucleon form factors are being computed by a number of collaborations in order to understand the
discrepancies

N to ∆ transition form factors can be extracted in a similar way to the nucleon
Ratios of form factors expected to be less affected by lattice artifacts→ EMR and CMR allow
comparison to experiment

∆ form factors are predicted

Resonance width can be computed within Euclidean Lattice QCD as illustrated for the ρ-meson→
similar techniques can be applied to ∆
=⇒ Complete description of the nucleon-∆ system
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∆ axial-vector form factors
Axial-vector current: Aa

µ(x) = ψ(x)γµγ5
τa
2 ψ(x)

〈∆(p′, s′)|A3
µ(0)|∆(p, s)〉 = −ūα(p′, s′)

1

2

−gαβ
(

g1(q2)γµγ5 + g3(q2)
qµ

2M∆

γ
5
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+
qαqβ

4M2
∆

(
h1(q2)γµγ5 + h3(q2)

qµ

2M∆

γ
5
) uβ (p, s)

i.e. 4 axial form-factors, g1, g3, h1 and h3 −→ at q2 = 0 we can extract the ∆ axial charge
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=⇒ Using a consistent chiral perturbation theory framework extract the chiral Lagrangian couplings gA, cA, g∆

from a combined chiral fit to the lattice results on the nucleon and ∆ axial charge and the axial N-to-∆ form
factor C5(0).
C. A., E. Gregory, T. Korzec, G. Koutsou, J. W. Negele, T. Sato, A. Tsapalis, arXiv:1011.0411
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Shape of ρ-meson

Four-point functions non−relativistic limit→ |ψ|2

The ρ-meson having spin=1 is cigar-like in the lab frame, C. A. and G. Koutsou, Phys. Rev. D78 (2008) 094506
In agreement with form factor calculation J.N. Hedditch et al. Phys. Rev. D75, 094504 (2007)
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Lattice spacing determination
Use nucleon mass at physical limit

Extrapolate using LO expansion: mN = m0
N − 4c1m2

π −
3g2

A
16πf2π

m3
π

Systematic error from O(p4) SSE HBχPT
Simultaneous fits to β = 1.9, β = 1.95 and β = 2.1 results

β = 1.90 : a = 0.087(1)(6)

β = 1.95 : a = 0.078(1)(5)

β = 2.10 : a = 0.060(0)(3)
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